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Dead time of the apparatus used for particle detection affects every measurement of nuclear half-

life, while its nature and extent may not be exactly known. Consequently, the data obtained in such 

measurements yield results that may depend on some educated estimates of the dead-time effects. These 

effects increase when the product of the dead time per event and the event rate expected in the absence of 

dead time (i.e. the ideal rate) increases, in which case the errors in the estimates have a greater effect on 

the accuracy of the measured half-lives. Therefore, there is a need for a proven standard method of 

measurement and analysis that would provide the best accuracy and precision of the results for a given 

number of measured events.  

Such a method has been developed recently [1]. It requires a measurement of the time of each 

particle-detection event, which can easily be accomplished using a suitable time-to-digital converter 

(TDC) [1]. The key element in the analysis is the imposition of a known, sufficiently large extending dead 

time to the measured sequence of events in order to produce a set of surviving events for which the effects 

of the actual dead time are completely obliterated by the effects of the imposed dead time. As a result, the 

dead time following each surviving event and the live time preceding each surviving event are known 

exactly, which provides for an exact statistical analysis of the time intervals between consecutive 

surviving events. We validated this method by using simulated data for the beta-decay of 26mAl (at half-

life T1/2 = 6.3452 s [2]), with an assumed constant background event-rate of B = 1 s-1 and an initial decay 

rate, A, ranging from 100 s-1 to 100,000 s-1. The imposed extending dead-time per event, τe, ranged from 2 

μs to 512 μs, so that Aτe ranged from 2´10-4 to as high as 51.2. 

However, it turns out that the time it takes to analyze the data using this method for a given total 

number of events increases drastically as the event rate decreases. This is mainly because in this case the 

number of events per sample decreases, so that an increasingly larger number of samples must be 

analyzed. While the latter leads only to the need for increased computing power and memory size, the 

former presents an additional problem: As the average number of events per sample decreases and 

becomes too small, the distribution of the maximum-likelihood values of the fitting-function parameters 

obtained in the analysis of each sample broadens to the point at which it becomes affected by the physical 

restrictions of the problem, such as the requirement that all parameters have positive values. This leads to 

an increased systematic error and a biased result. Unfortunately, systematically ignoring the affected 

samples has the same kind of an effect. 

A traditional solution to this problem would be to (a) produce a decay spectrum (i.e., a time 

histogram) of the surviving events for each sample, (b) correct the number of events in each channel of 

each decay spectrum for dead-time effects, and (c) combine channel-wise the resulting dead-time-

corrected (dead-time-free) decay spectra into a single decay spectrum for an analysis to determine the 

nuclear half-life. While parts (a) and (c) of this procedure are straightforward, part (b) may only seem 

straightforward because the live- and dead-times associated with each surviving event are assumed to be 
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known exactly. To the best of our knowledge, none of the existing published methods that could be 

applied here was proven to be unbiased, numerically problem-free, and applicable to the cases involving 

low event rates and large dead-time corrections. Thus, this problem is far from being trivial. 

For the method in which the dead-time-corrected number of events in a given channel is obtained 

by dividing the observed number of events in that channel with the total channel live time and 

multiplying the result with the channel duration, the extent of the problem is illustrated in Fig. 1a, which 

is based a data set with approximately one million events simulated at a constant ideal event rate ρ=10s-1, 

and partitioned into one thousand samples, each having 100 channels spanning the duration of 100 s. The 

imposed extendable dead time per event τe was varied from 0 to 120 ms. Evidently, the dead-time-

corrected number of events divided by the actual number of events in the absence of dead time is 

increasingly greater than the expected value of 1 as the dead time increases, reaching the value of as high 

as 1.22 at τe = 100 ms. A similar behavior is expected in the case of constant τe and changing ρ, since for 

the given data set the effect depends on the observed event rate, which in turn depends on ρτe. It should be 

noted, though, that the same method of dead-time correction yields the expected (and desired) result, as 

 
FIG. 1. Total dead-time-corrected number of events [N(τe)]corrected divided by the total number of events in the 
absence of dead time N(0) for a simulated data set described in the legend. (a) Live-time-fraction correction was 
applied to one channel of one sample at a time. (b) Live-time-fraction correction was applied to one channel at a 
time after all samples had been combined. (c) Simulated dead-time correction was applied to one channel of one 
sample at a time, using the ideal event rate estimated from the sum of three consecutive live-time intervals. (d) 
Simulated dead-time correction was applied to one channel of one sample at a time based on the ideal event rate 
actually used in the simulations. 
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shown in Fig. 1b, if part (c) of the procedure is applied before part (b). This shows that, for a given total 

number of events, the bias of this method increases as the observed (effective) event rate decreases. 

Unfortunately, the decay spectra obtained from each sample can be combined first and the combination 

dead-time corrected next only if the ideal event rate function is the same for all samples, which cannot be 

guaranteed in the real measurements of nuclear decay. 

Therefore, a new approach to the problem is proposed here, in which (i) the events lost due to 

dead time are replaced by a statistically equivalent set of events and inserted appropriately into the 

sequence of surviving events, thus producing a statistically correct dead-time-free sequence of events. 

This would be followed by (ii) producing a decay spectrum of these events for each sample and (iii) 

combining channel-wise these decay spectra into a single decay spectrum for analysis. While parts (ii) 

and (iii) of this new procedure are straightforward, part (i) has yet to be developed. The key requirement 

is that the dead-time correction must be based solely on the known live-time and dead-time intervals 

associated with the surviving events, and specifically, without any advanced knowledge of the ideal rate 

or its time-dependence.  

Given that the number of events lost due to the imposed extending dead time per event τe depends 

directly only on the duration of the dead-time interval following each surviving event (which is known 

exactly if τe is sufficiently large) and the ideal rate at the time of each surviving event (which is not 

known a priori), the latter quantity must be estimated based on the known live times preceding each 

surviving event. This is possible because, at a given ideal event rate ρ, the distribution of these live times 

is identical to the distribution dp1/dt of the times between consecutive events in the absence of dead time, 

and is given by 

 

 dp1/dx1 = exp(-x1) ,        (1) 
where  
 x1 = ρt .         (2) 
 
 However, even though the mean value of x1 equals 1, 1/t is not a good statistical estimate 
of ρ because the most probable value of dp1/dx1 is zero, which means that it is very likely to 
encounter a live time interval so small that its reciprocal value exceeds that of the actual ideal 
rate by many orders of magnitude. On the other hand, if n consecutive live times are combined, 
the distribution of their sum tn is given by 
 
 dpn/dxn = (xn)

n-1 exp(-xn) / n! ,       (3) 
 
where xn = ρtn. This distribution peaks at the value of (xn)peak = n – 1 and (for n > 1) it tends to 
zero both for extremely small and extremely large values of xn, thus making (n - 1)/ tn a good 
statistical estimate of ρ. 

The distribution of pn gets narrower as n increases, in which case the estimates of ρ improve. 

However, a large value of n is not practical when ρ is expected to change significantly between the 

beginning and the end of the time interval xn. On the other hand, when this is not the case, the live-time 
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intervals to be combined can be sampled using patterns that do not necessarily involve consecutive 

values. 

To illustrate the new method of dead-time correction proposed here, we set n = 3 and use 

consecutive live-time values. Specifically, we populate the dead-time interval (tD)i that follows the 

surviving event i (for all available values of i) with simulated events, assuming the ideal event rate of 1 / 

[(tL)i  + (tL)i+1 + (tL)i+2], where (tL)i, (tL)i+1, and (tL)i+2 are, respectively, the live-time intervals preceding the 

surviving events i, i+1, and i+2. The result is shown in Figure 1c. For comparison, we repeat the same 

procedure using the ideal event rate used in the simulation and show the result in Figure 1d. Apparently, 

the bias of the new method of dead-time correction, if any, is commensurate with the expected statistical 

fluctuations, at least for ρτe < 1.1, and the method works much better than the traditional method based on 

the channel-by-channel correction, one sample at a time. 
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